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This article reports experimental data of density and ultrasonic velocity at the range from
278.15 to 323.15K and atmospheric pressure of ethers used as additives in fuels (methyl
tert-butyl ether ethyl tert-butyl ether, tert-amyl ether and diisopropyl ether). From the
experimental data, temperature dependent polynomials were fitted and theoretical models were
used to correlate these properties. The MTC Lattice Gas EOS is used to correlate
simultaneously vapour pressures and volumetric properties. Free Length Theory is applied to
estimate the ultrasonic velocity of the chemicals as a function of temperature, satisfactory
predictions were obtained. The dependence of temperature showed by these magnitudes reveals
a strong interaction at low values.
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1. Introduction

Environmental chemistry and engineering need reliable thermodynamic data of
pollutants for transfer modelling of organic chemicals, solve the remediation
of contaminated soils and waters, minimise the presence of hazardous pollutants in
aqueous effluents and develop new strategies for cheap and effective cleaning
procedures and then adequate decisions and remediation policies. From a more
fundamental point of view, thermodynamics are necessary for the understanding of the
complex molecular interactions and mechanisms of the solution. The test of the existent
models and the development of new methods for prediction of these thermodynamic
functions, have a particular significance because they are the only way to ensure
accurate results.
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Oxygenated compounds are added to gasoline in order to improve fuel combustion
efficiency and to lower exhaust emissions of CO and hydrocarbons. Examples of these
compounds are alcohols (as methanol, ethanol, isopropyl alcohol, isobutyl alcohol and
tert-butyl alcohol) and ethers (as methyl tert-butyl ether (MTBE), ethyl tert-butyl ether
(ETBE), tert-amyl methyl ether (TAME) and diisopropyl ether (DIPE)) [1]. MTBE is
the most important fuel oxygenate used worldwide, and from 1998 in USA and 2002 in
European Union it was included in monitoring programs of volatile organic
compounds and it is considered an unique contaminant due to its ability to move
readily throughout various environmental compartments and to its resistance to
degradation in all of them except air. On the other hand, MTBE remains in
groundwater for a long time after a spill and the other ethers should have similar
behaviour due to its similar molecular structure. The contamination of water supplied
by these kinds of organic chemicals is a problem of increasing concern in the last few
years. Some properties for these compounds are found in literature as Henry’s law
constants [2], vapour pressures [3]. Vapour pressure is also published as vapour—liquid
equilibria data for binary and/or ternary mixtures containing ethers [4—6].

However, systematic studies in terms of wide range of temperature or and pressure of
density and ultrasonic velocity are not currently found in the literature. Besides its own
practical importance [7], the density and ultrasonic velocity are closely related with the
determination of Henry’s law constants and the air-water partition coefficients, mass
transfer coefficient measurement and calorimetric studies by Maxwell coefficients.

This study is a part of a wider study related to theoretical and experimental analysis
of environmental pollutants [8,9]. Thus, as a continuation of our scientific study of
investigating physical properties related to characterisation of pollutants, are reported
the temperature dependence of density and ultrasonic velocity at the range 278.15-
323.15°K and atmospheric pressure of those ethers used in fuels as oxygenated
additives. From the experimental data, temperature dependent polynomials were fitted,
the corresponding parameters being gathered. Different derived magnitudes from the
experimental measurements were calculated. Because of the expense of the experimental
measurement of such data and current processes design is strongly computer oriented,
consideration was also given attention to how accurate theoretical methods work by
comparison with the experimental data. A lattice type equation of state was applied to
simultaneously correlate vapour pressure and densities in order to predict the non-ideal
temperature dependence of these magnitudes at a wide range. The EOS is based on the
generalised van der Waals theory and combines the Staverman—Guggenheim
combinatorial term of lattice statistics with an attractive lattice gas expression [10].
They also applied the Free Length Theory (FLT) model to estimate the isentropic
compressibility and thus the ultrasonic velocity of the chemicals as a function of
temperature as suggested by Jacobsen [11]. Satisfactory predictions were obtained for
both properties, a good accuracy being obtained for a wide range of temperatures.

2. Experimental section

2.1. Materials

MTBE, TAME and DIPE were of Merck quality with richness better than 99.5 mol%.
ETBE that is provided by REPSOL-YPF has purity higher than 97 mol%. The pure
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Table 1. Literature review of physical properties of pure compounds: densities p, ultrasonic velocity u.
T(K) plgem ™ u/ms~!
Component exptl. [12] [13] [14] [15] exptl. [15] [14] [16]
MTBE 278.15 0.755640 0.75614 - - - - - - -
280.90 0.752990 - 0.75332 - - - - - -
283.15 0.750684 0.75102 - - - - - - -
285.90 0.747849 - 0.74811 - - - - - -
288.15 0.745522 0.74585 - 0.7457 0.74579 1082.54 1082.4 1083 -
288.70 0.745013 - 0.74530 - - - - - -
293.15 0.740336 0.74065 - 0.7404 0.7406 1059.43 1059.5 1060 -
298.15 0.734915 0.73540 - 0.7353 0.73535 1035.89 1036.1 1035 -
299.80 0.733068 - 0.73379 - - - - - -
303.15 0.729734 0.73010 - - 0.73006 1013.37 1013 - 1014
308.15 0.724277 0.72482 - - 0.72473 989.91 990.1 - -
313.15 0.718875 0.71942 - - - - - - -
exptl. [13] [17] [18] exptl.
ETBE 280.90 0.752970 0.75316 - - -
283.20 0.750709 0.75077 - - -
285.90 0.747922 0.74799 - - -
288.70 0.745106 0.74511 - - -
293.15 0.740503 - 0.74111 - -
298.15 0.735357 - 0.73559 0.7362  1033.23 Not available
299.80 0.733544 0.73373 - - -
303.15 0.730171 - 0.73085 - -
308.15 0.724947 - 0.72598 - -
313.15 0.719680 - 0.72069 - -
exptl. [19] [18] exptl. [18]
TAME 298.15 0.765399 0.76577 0.7658 1115.55 1115
exptl. [20] [21] [22] exptl. [23]
DIPE 288.15 0.728594 - 0.72909 - - -
298.15 0.718207 0.71814 0.71870 0.71840 - -
303.15 0.712956 - - - 976.04 974.9
308.15 0.707664 - 0.70812 - - -

compounds were stored protected from the sunlight at constant humidity and
temperature. All products were degassed using ultrasound and dried on molecular
sieves (pore diameter of 4 and 5x 107'm from Fluka) before use. Densities and
ultrasonic velocities of the pure substances were checked and listed in table 1 and
compared with literature values.

2.2. Apparatus and procedure

The ultrasonic velocities and densities were measured with an Anton Paar DSA-5000
device with a precision of £0.1ms™' and £10 ®gem ™. The temperature was kept
constant with an accuracy of 0.001 K Calibration of the apparatus was performed
periodically, in accordance with technical specifications, using Millipore quality water
(resistivity, 18.2 MQ cm) and ambient air. Experimental procedure in our laboratory is
explained in detail in earlier papers.
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3. Results and discussion

3.1. Data correlation

The experimental measurements are presented in table 2. For compact and smooth
representation, the density and ultrasonic velocity of the chemicals were correlated as a
function of temperature in accordance to the equation 1:

N
=Y AT (1)

i=0

Where z is density (gem?®) or ultrasonic velocity (ms'), 7 is the absolute temperature in
Kelvin and A; are fitting parameters. N stands for the extension of the mathematical
series, which was optimised by means of the Bevington test [24]. The fitting parameters
were obtained by the unweighted least squared method applying a fitting Marquardt
algorithm. The root mean square deviations were computed using equation 2, where z is
the value of the property, and npat is the number of experimental data.

NDAT _ 2 172
o= (Zi:l (Zexp Zpred) ) ) (2)

NDAT

The fitting parameters and the corresponding deviations are gathered in table 3.
Figures 1 and 2, show the trend of density and ultrasonic velocity as a temperature
function.

3.2. Derived properties

A frequently applied derived magnitude for chemicals is the temperature dependence of
volumetry, which is expressed as isobaric expansibility or thermal expansion coefficient
(«). The data reported in literature normally give only values of thermal expansion
coefficients both of pure compounds and its mixtures, showing the relative changes in
density, calculated by means of —(Ap/p) as a function of temperature and assuming
that @ remains constant in any thermal range. This fact is due to the scarce availability
of accurate density data in a wide temperature range. The pure chemicals can be
computed by the following expression:

_ (9lnp
oz——< " )P. 3)

The values of isobaric expansibility computed from the measured densities are
gathered in table 2. The trend of isobaric expansibility is enclosed in figure 3(a)).

It has been attempted to explain the physico-chemical behaviour of the compounds
indicated above, in order to explore the strength and nature of the interactions of the
components by deriving various thermodynamic parameters from the ultrasonic
velocity and density data. The parameters derived from the experimental measured data
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Table 3. Parameters of eq 2 in the range 283.15-323.15K and root mean square deviations (o).

Ao Ay A As o

Density/(gem~?)

MTBE 7.604 x 107! —9.788 x 10~* —1.716 x 10-° 2.000 x 107 4213 %1073
ETBE 7.608 x 107! —1.001 x 1073 —5.007 x 10—’ —3.469 x 1077 6.082 x 107°
TAME 7.889 x 107! —9.306 x 10~* —3.074x 107 —3.292x 107 1.344 x 107
DIPE 7.439 x 107! —1.014x 1073 —4.850 x 1077 —4.107 x 107 3.351 x 107°
Ultrasonic velocity/(ms ™)
MTBE 1.153 x 10° —4.848 4884 %1073 —1.903x 1073 1.238 x 107!
ETBE 1.148 x 10° —4.649 2.464 x 1073 5.395 % 107° 6.448 x 1072
TAME 1.226 x 10° —4.480 1.473 x 1073 1.623 x 107° 2.758 x 1072
DIPE 1.111 x 10 —4.517 4.634x 1074 2.404 x 1073 3.836 x 1072
0.79
[m}
0.78 DDDDDDDD
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Op og
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%o Io) Bo o
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Figure 1. Plots of density (zecm™) of MTBE (), ETBE (<), TAME () and DIPE (A) at the range of
temperatures 278.15-323.15 K.

were isentropic compressibility (k,), collision factor (S) and specific acoustic impedance
(Z2), attending to the following set of equations:

1
s

Z=u-p (5)

(6)
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Figure 2. Plots of ultrasonic velocity (ms~') of MTBE (©), ETBE (<), TAME (OJ) and DIPE (A) at the
range of temperatures 278.15-323.15K.

Where u is taken as 1600ms~'[11], ¥ is the molar volume and B is the geometrical
volume that is defined by the following equation:

4
B= (5) - N. @)
Where N is the Avogadro number and r is the molecular radius calculated through the
following expression:
3p 1\
=(—) . 8
' <16HN> ®)

Where b is the Van der Waals constant and is calculated from density and speed of
sounds measurements with the following equation:

M RT M2
b_<p>—<p.u2)-(|:l+ m] _1). ©)
Where R and 7 are common universal constants (8.3145Jmol 'K ™! and 3.141596,
respectively) and M is the molecular weight. The values of k, S and Z are enclosed into
the table 2. In figures 3(b)—(d) the temperature trend of the isentropic compressibility,
collision factor and the specific acoustic impedance, respectively, are shown.

It is seen from the measured data that an intense effect of temperature is produced in
the compounds. In fact, density and ultrasonic velocity decrease as temperature rises.
The molecular association becomes higher, then, at the lowest temperature, where
velocity and density have high values. This may be interpreted due to the formation of
stable polar interactions among ecther group resulting into complex formation
producing displacement of electrons and nuclei. The occurrence of high values is for
TAME due to its lower steric hindrance of aliphatic ends around oxygen. The observed
decrease of velocity with temperature may be explained by an increment in entropy and
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a diminution of ether groups interaction power by steric hindrance. The weakening of
the intermolecular forces is probably the reason for strong decrease in ultrasonic
velocity at any case. As it could be expected, attending to the molecular structure of
solvents, three different trends of interaction could be observed: a strong package
capability for TAME molecules, second, a similar trend for MTBE and ETBE and
finally a lower density and ultrasonic velocity due to chemical structure of DIPE.

Temperature is a fact that this study deals towards diminution of both measured
magnitudes, probably due to an increasing difficult of accommodation of the aliphatic
ends of the ethers by molecular kinetics into an ordered structure. Steric hindrance is of
course the main factor. In the last few years, different studies have pointed out the
special ““iceberg structure” of hydroxyl short molecules, specially water, alcohols and
aqueous mixtures of alcohols, and the intense modifications that this structure suffers as
a function of composition and temperature. This special structure is especially sensitive
to the introduction of globular molecules as those studied here, with polar or slight
polar groups, as occurs when these compounds are spilled into environment.
When these substances are pure compounds, as observed, steric hindrance weakens
polar interactions among like molecules when temperature rises, resulting into
formation of short mean life polar interactions and then less rigid liquid solvents.
Intermolecular free length shows an analogous behaviour as reflected by isentropic
compressibility for this mixture (equation 22). The decreased compressibility towards
lower temperatures brings the molecules to a closer packing, resulting into a decrease of
intermolecular free length. The decrease in the values of isentropic compressibility
(figure 3(b)) and intermolecular free length with increase in ultrasonic velocity indicates
that there is a significant interaction among molecules due to, which structural
arrangement is considerably affected. Figure 3(a) tallies with this idea, showing rising
values of isobaric expansibility for increasing temperatures for the whole compounds.
Accordingly to this fact, the collision factor diminishes due to a larger distance among
molecules (figure 3(c)). About the obtained values for the acoustic impedance for all
compounds (figure 3(d)), decrease in an analogous way, they reveal a lower molecular
interaction when temperature rises and then a lower acoustic pressure into the
liquid media.

3.3. Estimation of density-MTC lattice gas EOS

In the last few years, many researchers have applied and modify cubic equations of
state to almost any situation for thermodynamic studies of pure chemicals and mixtures,
although the success is always strongly dependent of a wide understanding of how
molecules interact in terms of space and energy [25]. However, in the last few years the
interest related to non-cubic theoretically based EOS for prediction of fluid phase
equilibria or others thermodynamical properties has increased. In this study, the Lattice
gas EOS developed by [10] was also used to describe volumetric trend of these chemicals.
The EOS is normally written in groups contribution form, which is:

22‘771“|:~ﬁl}—kgﬁrln[‘;_l—g(([ﬁ)]%—l— ALCONS o S 7R Uit

2 v—1+(q/r) 7—1+(q/r)r
(10)

i=1 a=1
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Where z is the compressibility factor, v¢ is the number of type a groups in a molecule
of type i, Q“ is the surface area of group a, 1 =(Z/2)(r — q) — (r — 1) and W is a constant
of the lattice structure, set to 1. The average number of segments occupied by a
molecule in the lattice (r), the mean number of nearest neighbours (Z¢) and the reduced
molar volume (V) are given by:

ri:Zv?Rar:inri (11)
Zqg = Zx,- > vz (12)

v = = — 13

"IN T (13)

=y e (14)
i=1 a=1

= Zx,— v e, (15)

Here, R“ and V“ are the group-contribution parameters for the number of segments and
hard-core volume, respectively; v* is the molar hard-core volume parameter for a group
of type a. There was also defined:

n o

e = Z Smyma (16)
m=1
S — Zl 1 ;nlem (17)
q
Yy = exp (_uma>. (18)
(RT)

Where # is the interaction energy between groups m and a. The fugacity coefficient
derived for the model is:

ndh— ,ln[é}m z>1n[ ; }g{(q/r)(qi_m)

1+(q/r) —1+(@g/n]  v—1+(q/r)
T—14(g/n ] YR 1v" v —r)
v 4041 _ ” = ! —Inz. (19
" ;”’Q ] e S e e 09
It was assumed in previous studies that u”* are given by:
uba ba Bba
— 1+— 2
R R ( + T) (20)

In summary, the equation of state has four parameters for each group (v*, Q“, ug’/R
and B““) and two parameters for interactions between unlike groups (u”” /R and B9).
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Table 4. Obtained parameters for EOS root mean square deviation between calculated
and experimental values for vapour pressure (P**") and liquid density (p).

Component v o“ B ui /R
em®mol ™! K K
MTBE 84.235 10.622 16.965 —337.186
ETBE 97.046 12.304 8.9901 —338.429
TAME 95.559 12.045 10.003 —353.999
DIPE 100.79 12.037 39.833 —271.810

The cell volume v* is fixed in 5cm’mol™" was used as suggested by Mattedi er al.
Although the EOS is written in a group contribution form, in this study a molecular
approach was used, and so each compound were considered as a group. Pure
parameters were fitted using the simplex algorithm of Nelder and Mead [26], in order to
minimise the objective function:

s asat\ 2
sat sat 2 liq —sat liq —sat
ZN P Pipes + Pical " Pipex
i=1 psat ig_sat
Lpex pz.pex

N

lig_sat

F= Q1)

Where P*' is the vapour pressure and p is the saturated molar liquid density. The
subscripts cal and pex indicate calculated and pseudo-experimental values and N is the
number of data points used. The numerical values for the obtained parameters are
coherent. As expected, similar parameters for all substances have the same magnitude.
Vapour pressure experimental data were obtained from [3], except for DIPE, which
direct data was not available. For DIPE there were used pseudo-experimental data
generated through DIPPR correlation [27] in the range of 5-50°C. Experimental density
data from this study was also used. Table 4 presents the obtained parameters. The
numerical values for the obtained parameters are coherent. As expected, similar
parameters for all substances have the same magnitude. Only the energy parameter and
the parameter for its temperature dependency are different for DIPE. It could be
explained because pseudo-experimental data of vapour pressure used in fitting
procedure was in the range from 5-50°C, the data available for the others ethers
were in a wider range of temperature. In table 5, the root mean square deviations and
the relative deviation for vapour pressure and liquid density are shown. From the
presented results it could be seen that a very good agreement between experimental and
calculated values for the two properties.

3.4. Estimation of ultrasonic velocity — FLT

In the last few years, FLT has proved its applicability for multicomponent estimation
and accurate results for molecules of different nature. The experimental data for the
isentropic compressibility of the chemicals studied here were compared with values
determined by the theoretical procedures. This model could be expressed as follows [11]:

2
Ky = <%> . (22)
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Table 5. Comparison obtained between experimental data and theories (root mean square (o) and relative

deviations).
Component P pha FLT
o APIP (%) o Aplp (%) o
MTBE 0.002930 0.06 0.019437 2.66 43.021
ETBE 0.000420 0.07 0.001123 0.13 45.448
TAME 0.000347 0.10 0.000930 0.11 36.102
DIPE 0.000647 0.12 0.001489 0.18 31.857

Where «, is the isentropic compressibility that is calculated with the ultrasonic velocity
(u) and density (p), through the equation 4:

K is a temperature dependent constant (K = (93.875+ 0.375 - 7) - 107®) and L is the
intermolecular free length calculated by the following expression:

) o)

Where V) is the molar volume at absolute zero and Y is the molar surface area. These
two variable are calculated with the next equations:

Y = 408402519.1 - (V) (24)
T 0.3
V0:V.<1—F> . (25)

Where T, are the critical temperatures and were used the published in literature [28].
The FLT estimates the isentropic compressibility of a mixture attending to the free
displacement of molecules as a main function of temperature. The deviations of each
procedure for the studied mixtures are gathered into table 5 by means of equation 22,
giving the FLT acceptable results in terms of quantity and sign at every studied case.

4. Conclusions

It is well known that thermodynamic properties govern the behaviour of contaminants
in the environment. Values of basic magnitudes as density, ultrasonic velocities and
isentropic compressibilities can thus be applied to model and predict the displacement,
distribution and fate of contaminants into natural media. In this article, new data for
the temperature dependence of density and ultrasonic velocity at the range of
temperature 278.15-323.15 K and atmospheric pressure of a collection of ethers applied
as gasoline oxygenated additives (MTBE, ETBE, TAME and DIPE), have been
measured.

In order to provide correlative methods to be used in computer-aided design, data
were directly correlated with polynomial functions. Density and vapour pressures were
simultaneously correlated by a lattice equation of state. Ultrasonic velocities were
compared through isentropic compressibility description with FLT. Satisfactory results
were obtained with all predictive and correlative models.
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